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Abstract

This project seeks a characterization of factors external to software transactional memories (STM) that may

affect their performance (speed-up). The characterization can help the researchers community to settle down

once and for all whether or not a particular selection of kernel parameters has a significative effect on the

results reported by the benchmarks. In this project we use three benchmarks—STAMP, STMBench7, and

eigenBench—to assess the behaviour of two STMs—TinySTM and SwissSTM—when external factors, de-

rived from different operating system features, are switched on and off in a series of experiments. The external

factors are turned on and off by changing parameters of the process manager (scheduler), memory manager,

and by binding the TM implementations to different thread libraries.

1 Introduction

The concept of atomic transaction can be considered one of the essential concepts of Computer Science [4].

In fact, the use of transactions in database systems has been seen as a key step for the success for relational

databases. They allow to use of more complex operations concurrently, while maintaining consistency of reads

and writes. Thanks to transactions database management, systems have been able to consistently scale up their

performance over they years.

The advent of multicore processors has created the equivalent of the concurrency harnessing problem for

applications in general, because multicore computers allow the parallel execution of multiple threads that com-
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municate by concurrently reading and writing to shared memory. In 1993, Herlihy and Shavit [6] proposed

an adaptation of the transaction concept, namely transactional memory (TM), as a way of trying to solve the

concurrency problem for multicore machines. Since then, several implementations of transactional memory ap-

peared in hardware (HTM), software (STM), and hybrid, using a combination of mechanisms implemented in

hardware and/or software. As the number of transactional memory implementations grew so did the necessity

to compare their relative performances. To address this issue, researchers have created transactional memory

benchmarks. Despite the existence of several benchmarks and transactional memory implementations, there is

a question that is still open to further research:

For a given combination of STM and benchmark, is there a parameter that can be changed in one of the

components of the environment—hardware or operating system—that has a significant impact upon the results

(speed-up) of the benchmark?

To make the problem concrete let us consider two examples. The selected combination of benchmark and

STM is STMBench7 and TinySTM [3], respectively. The environment is composed of an Intel machine with 16

cores and the operating system is a Linux-based distribution equipped with the latest stable version of the Linux

kernel. As a first example, the parameter whose influence upon the benchmark results the experiments want to

evaluate is the task affinity (process affinity with a certain core or pool of cores) of the process scheduler. So, if

the scheduler’s process affinity is changed, what is going to happen to the speed-ups reported by the benchmark?

For the second example, we retain STMBench7 and TinySTM but run them with different configurations of

thread libraries: LinuxThreads versus NTPL.

2 Software Transactional Memory Implementations

This section contains a summary of the software transactional memories used in this study: TinySTM [3]

[tmware.org] and SwissTM [2] [lpd.epfl.ch]. Further details about both TMs can be found in the

respective sites.

2.1 TinySTM

TinySTM is a word-based STM that uses locks to protect shared memory locations. It has been used as the basis

for a number of experiments on transactional memory because of its very simple contention manager based on

a encounter-time locking with the following potential advantages:

• early detection of conflicts between transactions can increase throughput because transactions do no per-
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form useless work. By contrast, commit-time locking may help so avoid some read-write conflicts, but

general conflicts discovered at commit time cannot be solved without aborting at least one transaction;

• encounter-time locking allows tinySTM to efficiently handle reads-after-writes without requiring expen-

sive or complex mechanisms.

From the point of view of recovery managament, tinySTM implements two techniques: (i) write-through,

and (ii) write-back. With write-through access, updates are written directly to memory and previous values are

stored in an undo log to be reinstated in the case of an abort. With write-back access, updates are stored in a

write log, and written to memory upon commit.

Summarily, tinySTM is a resonably simple STM implementation that has a good potential for a comparative

study such as the one devised for this project.

2.2 SwissTM

In relation to TinySTM, the main distinctive features of SwissTM are:

• A conflict detection mechanism that detects (i) write/write conflicts eagerly, in order to prevent trans-

actions that are doomed to abort from running and wasting resources, and (ii) read/write conflicts late,

in order to optimistically allow more parallelism between transactions. Intuitively, transactions eagerly

acquire objects (locks) for writing, which helps to detect write/write conflicts as soon as they appear. This

also avoids wasting work of transactions that are already doomed to abort after a write/write conflict. The

use of invisible reads allows transactions to read objects acquired for writing with the property that the

detection of read/write conflicts is delayed, thus increasing the potential for inter-transaction parallelism.

A time-based scheme is used to reduce the cost of transaction validation with invisible reads.

• Contention management uses a two-phase protocol that has no overhead on read-only and short read-

write transactions while favoring the progress of transactions that have performed a significant number of

updates. Basically, transactions that are short or read-only use the simple but inexpensive timid contention

management scheme, aborting on the first encountered conflict. Transactions that are more complex

switch dynamically to the greedy mechanism that involves more overhead but favors these transactions,

preventing starvation. Additionally, transactions that abort due to write/write conflicts back-off for a

period proportional to the number of their successive aborts, hence reducing contention on memory hot

spots.
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Again, this very brief summary of the distinctive features of SwissTM is included here only to show why it

has become a major player among the various STMs used nowadays by the research community.

3 Benchmarks

In this section we provide a summary of the benchmarks that are going to be explored during the project.

STAMP [10] has been chosen because it is one of the most used benchmarks in the literature. STMBench7 [5]

is here because it is based on a very interesting concurent data structure that allows fine control over the variables

that affect the performance of transacional memories. eigenBench [7] is included due to its flexibility.

3.1 STAMP

The STAMP benchmark [10] was the first to include a series of wide range real applications tailored test trans-

actional memory implementations. The applications included in the benchmark are: bayes, genome, intruder,

kmeans, labyrinth, ssca2, vacation, and yada. Due to space limitation, we comment on four of the eight appli-

cations.

• bayes: it implements and algorithm for learning the structure of Bayesian networks from observed data.

The algorithm uses a hill-climbing strategy that combines local and global search.

• genome: genome assembly is the process of taking a large number of DNA segments and matching them

to reconstruct the original source genome. This is a two-phase algorithm and transactions are used in each

phase to organize the concurrency upon the hash table the stored the genome segments.

• intruder: This is a network packet scanner, that is, it filters network packets basd on a set of intrusion

signatures, using techniques developed for network intrusion detection systems. Network packets are

processed in parallel and go through three phases: capture, reassembly, and detection. The main shared

data structure are a queue and a dictionary (hash) whose methods are organized as transactions.

• labyrinth: this program implements a classical routing through a maze algorithm that was the basis in the

past for printed-circuit board routing. The main data structure is a three-dimensional uniform grid that

represents the maze. Transactions are used to organize parallel searches through this maze. Labyrinth

tends to spend most of its computation time on calculations to find shortest distances over the grid, thus

it contains long duration transactions with high levels of contention upon the shared data structure.

A detailed discussion of the parameters can be found in [10].
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Table 1: Summary of application characteristics included in STAMP in terms of transaction parameters
Application Tx Length R/W set Tx Time Contention

bayes long large high high
genome medium medium high low
intruder short medium medium high
kmeans short small low low

labyrinth long large high high
ssca2 short small low low

vacation medium medium high low/medium
yada long large high medium

3.2 STMBench7

STMBench7 [5] and eigenBench [7] differ from STAMP [10] in the following aspects. STMBench7 is not

based on different applications but on a shared tree (graph) data structure dynamically generated as a function

of initial parameters that determine the size, breadth, depth, and balance of the tree. Transactions with different

characteristics in terms of length, read-write data sets, time and contention are them executed upon the tree to

emulate different profiles of transactional applications.

3.3 eigenBench

eigenBench has been developed by the same group that developed STAMP at Stanford University. Their expe-

rience with STAMP has led the group to isolate eight parameters that they consider necessary and sufficient to

model any transactional application. The parameters are:

• concurrency: number of concurrently running threads;

• working-set size: size of frequently used shared memory;

• transaction length: number of shared accesses per transaction (ratio of reads to writes that should be

conditioned by transactions);

• pollution: fraction of shared writes to shared accesses;

• temporal locality: probability of repeated address access per shared access;

• contention: probability of conflict of a transation against any other active transaction;

• predominance: fraction of shared access cycles to total execution cycles;

• density: fraction of non-shared cycles executed outside the transactions to total non-shared cycles.
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As we can see from the summaries above, the three benchmarks selected represent a carefully chosen cross

cut of the benchmarks avaliable. STAMP is based on the straight implementation of applications, STMBench7

is a benchmark based on a single shared data structure that is accessed/updated using transactions. eigenBench

can be seen as a application emulator as it has isolated eight orthogonal characteristics of transaction-based

applications that can be combined to emulate any reasonably justifiable transactional application (benchmark).

4 Operating System: external factors

From the perspective of the transactional memory implementation the operating system and the hardware are

the environment. In this section we summarize the factors whose change is going be used to assess the change

in the speed-up of the transactional memory.

We have chosen Linux as the operating system for the experiments for the simple reason that it is by far

the dominant operating system used for research on transactional memory. Further details about each of the

Linux components mentioned here can be found by reading the kernel code with the help of text such as the one

written by Bovet and Cesati [1], or Love [9].

4.1 Scheduler (Process Manager)

Linux, as any time sharing system, achieves concurrent programming, be it in unicore or multicore hardware,

by switching the CPU from one process (thread) to another in a very short time frame. The data structures and

the actual event of process switch is not going to be detailed in this text. Here we are concerned only with the

mechanisms used by the kernel to decide when and which process to switch in and out of a CPU; this is called

process scheduling.

From the point of view of a TM, any change in the behaviour of the scheduler has a potential to change its

speed-up (performance) and it is interesting to see how changes in, for example, the scheduling policy, affect

the benchmark.

Linux scheduling is based on a time sharing mechanism: several threads run in “time multiplexing” because

the CPU (or core) time is divided into slices, one for each runnable process. If a currently running process

has still not finished its execution when its time slice (quantum) expires, a process switch may take place.

Time sharing relies on timer interrupts and is thus transparent to processes. Process switching is based on a

mechanism that dinamically assigns priorities to processes. The scheduler keeps track of what processes are

doing and adjusts their priorities periodically to maintain a balanced used of the CPU by processes that have
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different characteristics in terms of resources use (CPU, I/O, memory, etc).

In the current version of the Linux kernel, a process is scheduled according to one of the following schedul-

ing classes: fifo, real time, and normal. A process belonging to each of these classes can have its static priority,

dynamic priority, quantum, and core affinity changed. There are several system calls that allow the conditioning

of the behaviour of the scheduler, which are not detailed here due to space limitation. We are going to devise

experiments to test whether changes in the behaviour of the scheduler can have a significative impact on the

results resported by the benchmarks.

4.2 Memory Manager

We use to think of the computer’s memory as a homogeneous, shared resource. Disregarding the role of the

hardware caches, we expect the time required for a CPU (core) to access a local memory to be essentially the

same, regardless of the physical location and the CPU (core). Unfortunately, this assumption is not true for

some architectures. The kernel has a set of system calls that allows the tuning of a few parameters that affect the

behaviour of the memory manager such as: caching, locality of access, page fault behaviour, and contention.

4.3 Threads Library

Linux allows threads to be executed basically in two ways: using a user-level threads library that allows many

different mappings between user-level threads and kernel threads, or using a straight one-to-one mapping be-

tween user-level threads and kernel-level threads via their native threads implementation (NTPL). So, we would

like to access the impact on the benchmarks of the choice of policy used to map user-level threads to kernel-level

threads.

5 Methodology

The methodology to be used in the project has already become a standard for researchers that work in the field

of transactional memory. A configuration consisting of a benchmark, a STM implementation and a multicore

machine is setup—we have at our disposal machines with 16 and 32 cores. Then, the benchmark is run and the

results come as graphs showing the speed-up obtained for a given benchmark application as the number of cores

is scaled up. In this project the same procedure is going to be used with the additional step that first a Linux

kernel is going to be setup with the parameters selected for the external factor under test. For example, if the

external factor to be tested is a different scheduling algorithm, then the process scheduler is going to be setup
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so that the desired scheduling algorithm is active during the experiment. Later, the comparison of the results

obtained with a modified kernel against the results obtained with a kernel without changes are going to allow us

to observe whether the factor under test had an impact in the behaviour of the benchmark. Statistical analysis

of the results are going to be based upon standard sampling and variability analysis as described in chapter 13

of Jain’s text [8].

5.1 Schedule

This section details the tasks planed for the project and their respective time schedule. (Table 2):

1. Tansactional memory: study of fundamental concepts.

2. eigenBench: parameters, compilation, STM binding, execution, data collection, result analysis.

3. STAMP: parameters, compilation, STM binding, execution, data collection, result analysis.

4. STMBench7: parameters, compilation, STM binding, execution, data collection, result analysis.

5. Statistics fundamentals with R.

6. Linux: process management, scheduler, threads.

7. TinySTM: study of its parameters and behaviour.

8. SwissTM: study of its parameters and behaviour.

9. Experiments with STAMP, STMBench7, eigenBench, TinySTM: process manager, memory manager,

threads (Linux).

10. Experiments with STAMP, STMBench7, eigenBench, SwissTM: process manager, memory manager,

threads (Linux).

11. Writing of a technical report/paper.
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Table 2: Project Schedule
2013 2014
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